
J. Fluid Mech. (2004), vol. 510, pp. 303–331. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004009504 Printed in the United Kingdom

303

On the interaction of higher duct modes with a
perforated liner system with bias flow

By JEFF D. ELDREDGE†
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

(Received 10 July 2003 and in revised form 13 February 2004)

We explore the three-dimensional interaction of higher acoustic modes with bias-flow
perforated liners in cylindrical and annular ducts. Pressure fluctuations in the vicinity
of the liners excite the production and shedding of vorticity from the rims of apertures
in the liners. An effective liner compliance is used which accounts for this transfer of
acoustical into vortical energy. The investigation is facilitated by a Green’s function
solution of the Helmholtz equation in a lined section of duct, allowing calculation
of the amplitudes of exiting wave modes due to incoming acoustic disturbances. A
system containing an arbitrary number of concentric liners and the hollow cavities
formed between them can be modelled. The results for an incident plane wave are
compared with those from our previously developed one-dimensional model, with
excellent agreement. We demonstrate that results for all modes that travel parallel
to the liner, including higher circumferential modes in narrow annular gaps, exhibit
self-similar behaviour, and that liner design rules developed for planar duct modes
can be adapted accordingly. The acoustic absorption can be strongly enhanced by
downstream duct reflection for wavelengths larger than twice the liner length, but is
less affected at higher frequencies that allow persistent pressure minima along the
liner. Across larger frequency ranges, the liner systems are shown to permit two types
of resonance associated with the duct and the cavities, respectively, and a third of
Helmholtz type, associated with the system as a whole. The effect of these resonances
on incident modes is demonstrated, and, in particular, we explore their enhancement
of acoustic absorption.

1. Introduction
Engineering systems such as industrial gas turbines are often operated in conditions

that make them susceptible to acoustically driven combustion instabilities. The large
pressure fluctuations associated with these instabilities can degrade the performance
of the device and potentially cause structural damage, and passive damping techniques
are frequently used to attempt to mitigate their growth. For cooling purposes,
perforated liner systems which introduce steady flow through regular arrays of circular
apertures are often incorporated into the walls of a combustion chamber. The cooled
walls may consist of multiple layers of liners for a more effective distribution of cool
air. In addition, the steady bias flow can also enhance the acoustic absorption by the
liner, and thus such a system can effectively serve both purposes. In previous work
(Eldredge & Dowling 2003), we investigated the absorptive properties of the liner
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system when only planar duct modes are present. Acoustically driven instabilities may
also contain higher modes, however, and in this paper we seek to characterize the
response of such liner systems to general acoustic modes in cylindrical and annular
ducts.

The physical mechanism responsible for acoustic absorption in a bias-flow liner
is the generation of fluctuating vorticity at the rim of each aperture, creating a
dipole-like sink which removes energy from the nearby sound field. The vorticity
is subsequently convected away by the mean jet and dissipated into heat. This
mechanism for the transformation of acoustic energy into vortical energy occurs in
many geometries (e.g. Bechert 1980; Howe 1980), and has been reviewed by Crighton
(1981). Howe (1979) determined the unsteady flow in an aperture through which a
steady high-Reynolds-number flow passes by solving the Poisson equation for the
fluctuating stagnation enthalpy and using an unsteady Kutta condition to determine
the amount of vorticity produced. By virtue of the mean flow, the fluctuating sound
field and resultant vorticity are linearly related. Hence the Rayleigh conductivity for
the aperture, which quantifies the ratio of its unsteady volume flux to the pressure
difference across it, is independent of the amplitude of the sound field. Provided the
vorticity does not interact with another receptive edge, no sound is produced by this
process – the sound produced by the quadrupole sources in the jet issuing from the
aperture is uniformly weaker at all Strouhal numbers.

In the absence of a mean flow, vorticity can still be produced unsteadily at the
aperture rim if the incident sound field is sufficiently large. Under such conditions, the
Rayleigh conductivity contains a term that is proportional to the acoustic velocity.
This nonlinear mechanism has been explored by Cummings & Eversman (1983) in
the context of duct terminations and by Cummings (1983) for orifice plates.

The problem of wave propagation in ducts with acoustically lined walls is classical
(see e.g. Morse & Ingard 1968). Ducts that are comprised of wall segments of different
acoustic properties were considered by Lansing & Zorumski (1973), who explored
the reflection and transmission from a discontinuity of wall impedance by matching
pressure and velocity across the discontinuity. They evaluated their procedure by
comparing with a Wiener–Hopf solution for the case of a two-dimensional duct with
an impedance change on only a single wall, and found that the inclusion of only a
few cutoff modes was required for agreement.

Screens and liners of the type considered here, with steady flows issuing through
regular arrays of apertures, have been previously explored, as well. Howe (1979)
extended his single-aperture result to examine the reflection and transmission
properties of a screen subjected to an incident plane wave. Provided the apertures
are sufficiently far apart, the vorticity shed by one aperture has no effect on the flow
through another, and thus the apertures contribute independently to the acoustic
characteristics of the screen. When the screen is backed by a cavity and rigid wall,
absorption is enhanced by the additional interaction of the energy reflected by the
wall. An infinite backed screen was investigated both theoretically and experimentally
by Hughes & Dowling (1990), who found that absorption was largest at frequencies
that they identified with a Helmholtz-type resonance of the volume behind each
aperture. With an interest in exploring transverse-type duct resonances, they extended
their analysis to examine the altered properties of an infinitely long cylindrical duct
when the wall is lined with such a backed screen. Though these liners are effective
as passive devices, active control techniques may be used to increase their range of
utility. Zhao & Sun (1999) explored the active tuning of both the cavity depth and
bias flow of a liner to achieve either maximum absorption or specified wall impedance.
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These analyses all assumed the liner to be infinitesimally thin, but the finite thickness
of a real liner increases its reactance owing to the inertia of fluid in each aperture,
as was confirmed experimentally by Jing & Sun (1999). Further ‘real flow’ effects –
such as viscous effects in the aperture flow and reactance of the external flow – were
incorporated into the impedance model developed by Bellucci, Paschereit & Flohr
(2002).

In previous work (Eldredge & Dowling 2003), we developed a one-dimensional
model for planar duct modes interacting with a finite-length system consisting of
multiple layers of bias-flow perforated liners. An effective wall compliance was used
for each liner, based on the aperture Rayleigh conductivity developed by Howe
(1979). When compared with the results from our experimental investigation, we
found excellent agreement for a wide range of frequencies and bias flows. The model
was used to develop a set of design rules for such liner systems.

In this work, we extend the results of Eldredge & Dowling (2003) to higher duct
modes. Our approach will again be to model the liners with effective compliances,
and employ a Green’s function to solve for the fluctuating pressure distribution in
the lined section of duct. The Green’s function will decouple the duct from the
surrounding cavities, and the resulting integral equation will only involve the normal
derivative of the pressure on the interfaces with the adjacent rigid-walled sections. By
matching pressure and velocity across the duct interfaces and projecting onto the duct
eigenfunctions, the integral equation is subsequently reduced to a system of equations
for the unknown modal amplitudes in terms of the prescribed incident mode.

In § 2, we develop the Green’s function solution approach for an arbitrary system
of liners and cavities. We also develop an expression for the acoustic absorption of
the system, which will be used as a metric for characterizing the behaviour of the
system in § 3. In this section we will examine the response of different liner systems
to planar, circumferential and radial modes. The first two we categorize as ‘grazing
modes’ because of their tendency to travel parallel to the walls of the duct, and their
interactions with the liner are shown to reduce to a self-similar form. Across larger
frequency ranges, we identify three classes of resonances associated with the duct, the
cavities and the Helmholtz resonance of the overall liner system, respectively. We also
present an approach for maximizing the broadband absorption at high frequencies
through adjustment of the aperture flow to shift the peak liner resistance. Finally,
conclusions are drawn in § 4. In the Appendix, further details are provided for the
development of the solution approach presented in § 2.

2. Model development
The goal of the model is to predict the acoustic scattering of an incoming

disturbance by a system consisting of an arbitrary number of concentric liners. We
do so by developing an equation in which the pressure fluctuations in a lined section
of duct are expressed solely in terms of surface integrals over the duct cross-section
upstream and downstream of the liner. Such an expression can then be transformed
into a scattering matrix for the incident disturbance amplitudes.

Consider an axisymmetric geometry as shown in figure 1. Two annular sections of
duct, with rigid inner and outer walls of radii r0 and r1, respectively, are joined by
a section of axial length L. This intermediate section also has a rigid inner wall of
radius r0, but its outer wall is replaced by a cylindrical liner of radius r1, uniform
compliance η1 and small thickness t1 � r1 − r0. This liner is surrounded (radially) by
an arbitrary number Nl of cylindrical liners of the same axial length and with radii
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Figure 1. Configuration of lined section of annular duct.

r2, r3, . . . , rNl
, uniform compliances η2, η3, . . . , ηNl

, and small thicknesses t2, t3, . . . , tNl
.

Adjacent liners form a hollow cavity between them, closed at each axial end by a
rigid wall. The sequence of liners may be truncated by either a plenum (in lieu of the
outermost cavity) or a rigid wall (in lieu of the outermost liner). Thus, the simplest
configuration – beyond the trivial case of an unlined duct – would consist of a single
liner surrounded by a plenum. The mean density and speed of sound in the duct are
ρ̄h and c̄h, and are ρ̄c and c̄c in the liner cavities. We will use the term ‘upstream’ to
denote the section of duct in which the source of the incident acoustic wave lies, and
‘downstream’ to describe the duct on the other side of the lined section.

2.1. Governing equations

Suppose that a small perturbation to the pressure is in the form

pm(r, x)ei(ωt−mφ).

We are permitted to consider circumferential modes independently, owing to the
axisymmetry of the geometry and the linearity of the problem. The amplitude of
this perturbation is governed by a modified Helmholtz equation. In the duct, this is
expressed in cylindrical coordinates as

1

r

∂

∂r

(
r
∂pm

∂r

)
+

∂2pm

∂x2
+

(
k2

h − m2

r2

)
pm = 0, (2.1)

where kh ≡ ω/c̄h. The axial coordinate, x, is measured from the left-hand end of the
lined section. Note that no mean duct flow is included in this analysis. The small
duct flow that grows from the contribution of the liner bias flow is assumed to be of
sufficiently small Mach number that its effect is negligibly small. In the liner cavities,
the governing equation is

1

r

∂

∂r

(
r
∂pm

∂r

)
+

∂2pm

∂x2
+

(
k2

c − m2

r2

)
pm = 0, (2.2)

where kc ≡ ω/c̄c.
We now partition an (r , x)-slice of the lined section into subdomains, as depicted in

figure 2. The first domain, Ω0, resides in the duct and is bounded by the inner wall of
the annulus, the interfaces with the rigid-walled sections upstream and downstream,
and the inward side of the first liner. The other domains are contained by the liner
cavities. For example, domain Ω1 is bounded by the outward side of the first liner,
the rigid transverse barriers, and the inward side of the second liner. For modelling
purposes, it is adequate to regard each liner as infinitesimally thin, and the domain
boundaries that are adjacent to it as common. The physical thickness of the liner can
be incorporated into its compliance, as demonstrated in § 2.4.
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Figure 2. Partition of lined section into subdomains.

The rigid-walled boundaries impose no-through-flow conditions on the velocity,
and thus vanishing normal derivative of the pressure. For the conditions at the liners,
we recall the definition of the compliance given by Leppington (1977), as the ratio of
the normal derivative of the pressure fluctuation pm at a compliant wall to the jump
in pm across the wall. Thus, conditions of this sort will be of the form

∂pm

∂n
= η [pm]0

+

0− . (2.3)

We hypothesize a thin layer of fluid adjacent to the inward side of the first liner,
in which the mean conditions are identical to those in the liner cavities, ρ̄c and c̄c.
Across the interface of this layer with the rest of the duct, the pressure and normal
velocity are continuous (strictly, the particle displacement is continuous, but, with a
lack of mean axial flow, this is equivalent to continuous normal velocity). Thus, for a
system of Nl liners, we have

∂pm

∂r
(r0, x) = 0, (2.4a)

∂pm

∂r
(r−

1 , x) = η1

ρ̄h

ρ̄c

[pm(r+
1 , x) − pm(r−

1 , x)], (2.4b)

∂pm

∂r
(r+

1 , x) =
ρ̄c

ρ̄h

∂pm

∂r
(r−

1 , x), (2.4c)

∂pm

∂r
(r−

k , x) = ηk[pm(r+
k , x) − pm(r−

k , x)], (2.4d)

∂pm

∂r
(r+

k , x) =
∂pm

∂r
(r−

k , x), (2.4e)

for x ∈ [0, L], and by virtue of the rigid cavity walls at x = 0 and x = L,

∂pm

∂x
(r, 0) =

∂pm

∂x
(r, L) = 0, (2.4f )

for r ∈ [rk−1, rk] and k = 2, 3, . . . , Nl . The series of conditions is concluded by either
a plenum external to the outermost liner, for which the final condition would be

∂pm

∂r

(
r−
Nl

, x
)

= −ηNl
pm

(
r−
Nl

, x
)
, x ∈ [0, L], (2.5)

or a rigid wall replacing the outermost liner at rNl
, for which the condition is simply

∂pm

∂r

(
r−
Nl

, x
)

= 0, x ∈ [0, L]. (2.6)

It is also necessary to constrain the acoustic energy density to be integrable as the
interfaces x = 0, L are approached along the lined wall, i.e. at r = r−

1 and x = 0+ and
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x = L−. This condition ensures that no energy is created at the discontinuity in wall
compliances. To satisfy these constraints, it is sufficient to require that the solution
and its first spatial derivatives are bounded at these points.

The conditions at the interfaces x = 0 and x = L, r ∈ [r0, r1], are derived from
enforcing continuity of pressure and velocity across these boundaries. However, the
fluctuating conditions immediately upstream of x = 0 and downstream of x = L are
not entirely known, and in fact represent the quantities we hope to solve for. We can
write the pressure in the upstream section in terms of eigenfunctions as

pm(r, x) =
∑

q

(α+
q exp(−iκqx) + α−

q exp(iκqx))Γm(γqr0, γqr), x < 0. (2.7)

In terms of the Bessel functions of the first and second kind, Jm and Ym respectively,
the radial eigenfunction for an annular duct is

Γm(a, b) ≡ Y ′
m(a)Jm(b) − J ′

m(a)Ym(b), (2.8)

or simply

Γm(a, b) ≡ Jm(b) (2.9)

for a cylindrical one. The rigid duct walls restrict the set of radial wavenumbers, γq ,
q = 0, 1, . . . , ∞, to the roots of the equation Γ ′

m (γ r0, γ r1) = 0, where

Γ ′
m (a, b) ≡ ∂

∂b
Γm(a, b) =

{
Y ′

m(a)J ′
m(b) − J ′

m(a)Y ′
m(b) (ann.),

J ′
m(b) (cyl.).

. (2.10)

The axial wavenumbers are related to these by

κq =

{∣∣k2
h − γ 2

q

∣∣1/2
, kh > γq,

−i
∣∣γ 2

q − k2
h

∣∣1/2
, kh < γq.

(2.11)

The axial derivative of the pressure in x < 0 is given by

∂pm

∂x
(r, x) = −i

∑
q

κq(α
+
q exp(−iκqx) − α−

q exp(iκqx))Γm(γqr0, γqr). (2.12)

Similarly, in the downstream section, x >L, the solutions are

pm(r, x) =
∑

q

(β+
q exp(−iκq(x − L)) + β−

q exp(iκq(x − L)))Γm(γqr0, γqr), (2.13)

∂pm

∂x
(r, x) = −i

∑
q

κq(β
+
q exp(−iκq(x − L)) − β−

q exp(iκq(x − L)))Γm(γqr0, γqr). (2.14)

The axial waveform in this section has been referenced to x = L, which ensures a
more accurate numerical solution for the amplitudes of modes that are evanescent at
the downstream interface.

Ultimately, we will suppose that the incident amplitudes, α+
q , are known, and that

β−
q are related to β+

q through a reflection from the downstream configuration. For
now, however, we will leave these pressures in their present form and proceed to the
solution approach.
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2.2. Solution scheme

In the Appendix, a decoupled integral equation is developed for the pressure, which
we quote here

pm(r, x) =

∫ r1

r0

r ′G̃m(r, x|r ′, 0)
∂pm

∂x
(r ′, 0) dr ′ −

∫ r1

r0

r ′G̃m(r, x|r ′, L)
∂pm

∂x
(r ′, L) dr ′. (2.15)

This equation has the advantage of only involving surface integrals over the duct cross-
section upstream and downstream of the lined section; the effects of liners and their
neighbouring cavities are contained entirely in the decoupling Green’s function, G̃m.
Equation (2.15) serves as the basis for the solution scheme to compute the scattering
of an incident acoustic wave by the liner system. When we evaluate the equation
on the cross-section boundaries at x =0 and x =L, match the pressures across them,
and then project the equation onto the space of rigid-walled eigenfunctions, we are
left with an infinite system of equations for the unknown reflection and transmission
amplitudes. This system can be judiciously truncated to form a numerical scheme.

First, we substitute expressions (2.12) and (2.14) for the respective pressure
derivatives in the surface integrals of (2.15). We use the decoupling Green’s function
in its cosine expansion form, as given by (A 22). The resulting expression for the
pressure can be written as

pm(r, x) = −i
∑

q

κq

L
(α+

q − α−
q )

∞∑
n=−∞

cos

(
nπx

L

)∫ r1

r0

r ′R̃n(r, r
′)Γm(γqr0, γqr

′) dr ′

+ i
∑

q

κq

L
(β+

q − β−
q )

∞∑
n=−∞

(−1)n cos

(
nπx

L

)∫ r1

r0

r ′R̃n(r, r
′)Γm(γqr0, γqr

′) dr ′.

(2.16)

The integral that appears in both terms can be evaluated analytically, and after some
manipulation we arrive at

pm(r, x) = −i
∑

q

(α+
q − α−

q )Γm(γqr0, γqr)
κq

L

∑
n

cos(nπx/L)

γ̃ 2
n − γ 2

q

+ i
∑

q

(β+
q − β−

q )Γm(γqr0, γqr)
κq

L

∑
n

(−1)n cos(nπx/L)

γ̃ 2
n − γ 2

q

− i
∑

q

(α+
q − α−

q )C̃s
q(r, x) + i

∑
q

(β+
q − β−

q )C̃c
q(r, x), (2.17)

where the coupling functions are defined as

C̃s
q(r, x) = η1

ρ̄h

ρ̄c

Γm(γqr0, γqr1)
κq

L

∑
n

D(0)
n,< (γ̃nr0, γ̃nr)

γ̃nD
(0)′
n, < (γ̃nr0, γ̃nr1)

Λn

γ̃ 2
n − γ 2

q

cos

(
nπx

L

)
, (2.18)

C̃c
q(r, x) = η1

ρ̄h

ρ̄c

Γm(γqr0, γqr1)
κq

L

∑
n

D(0)
n,< (γ̃nr0, γ̃nr)

γ̃nD
(0)′
n, < (γ̃nr0, γ̃nr1)

(−1)nΛn

γ̃ 2
n − γ 2

q

cos

(
nπx

L

)
. (2.19)

At first glance, it does not appear that (2.17) will satisfy the condition of continuous
axial velocity (or equivalently, axial pressure derivative) at the interfaces x = 0 and
x = L, due to the expansion in cosines. However, the cosine series in the first two
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terms converge uniformly to analytical expressions:

κq

L

∞∑
n=−∞

cos(nπx/L)

γ̃ 2
n − γ 2

q

= κqL

∞∑
n=−∞

cos(nπx/L)

κ2
qL

2 − n2π2
=

cos κq(x − L)

sin κqL
, (2.20)

κq

L

∞∑
n=−∞

(−1)n cos(nπx/L)

γ̃ 2
n − γ 2

q

= κqL

∞∑
n=−∞

(−1)n cos(nπx/L)

κ2
qL

2 − n2π2
=

cos κqx

sin κqL
, (2.21)

and thus the pressure in the lined section of duct can be written as

pm(r, x) = −i
∑

q

[
(α+

q − α−
q )

cos κq(x − L)

sin κqL
− (β+

q − β−
q )

cos κqx

sin κqL

]
Γm(γqr0, γqr)

− i
∑

q

(α+
q − α−

q )C̃s
q(r, x) + i

∑
q

(β+
q − β−

q )C̃c
q(r, x). (2.22)

Mathematically, the terms in square brackets represent a smooth transition between
the boundary values of the axial velocity at x = 0 and x = L; upon differentiation
with respect to x, one of these terms vanishes at either interface. If instead the terms
inside the series (2.20) and (2.21) had been differentiated directly, the resulting sine
series would not converge uniformly to the derivatives of the expressions on the
right-hand side. Also, it is important to note that the remaining two coupling terms in
(2.22) have vanishing axial derivatives at the boundaries x = 0, L, for they represent
the direct effect of the cavity pressures, which themselves have vanishing derivatives.
Thus, the infinite series in these terms are themselves uniformly convergent. It can be
easily verified by differentiating (2.22) with respect to x and comparing with (2.12)
and (2.14) at x = 0 and x = L, respectively, that the condition of continuous axial
velocity at the interfaces is indeed satisfied.

A physical interpretation of (2.22) is also readily available. As acoustic waves travel
from either upstream or downstream into the lined section, they are continuously
partitioned into a transmitted part and a reflected part at every axial position owing
to the presence of the liner. The propagation of the waves is controlled by the first
term of (2.22), while the final two terms in (2.22) represent the machinery for effecting
the partition, through excitation of a liner velocity flux, which requires the combined
contribution from all travelling modes. In the simple case of a rigid duct, the coupling
terms vanish, and the first term reduces to two uncoupled non-decaying travelling
waves.

The solution procedure is developed through a straightforward matching of pressure
at the interfaces. We alternately set the pressure expression (2.22) at x = 0 equal to
the upstream duct pressure there, given by (2.7), and at x = L to the downstream duct
pressure, given by (2.13). Both sides of these equations are multiplied by rΓm(γpr0, γpr),
with arbitrary p, and integrated over r ∈ [r0, r1]. The duct cross-section eigenfunctions
are orthogonal, and thus the resulting infinite systems of algebraic equations are

α+
p + α−

p = −i(α+
p − α−

p ) cot κpL + i(β+
p − β−

p ) csc κpL

− i
∑

q

Cs
pq(α

+
q − α−

q ) + i
∑

q

Cc
pq(β

+
q − β−

q ), (2.23)

β+
p + β−

p = −i(α+
p − α−

p ) csc κpL + i(β+
p − β−

p ) cot κpL

− i
∑

q

Cc
pq(α

+
q − α−

q ) + i
∑

q

Cs
pq(β

+
q − β−

q ), (2.24)
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for all p ∈ [0, ∞), where the modal coupling matrices, Cs
pq and Cc

pq , are defined as

Cs,c
pq ≡ 1

‖Γm,p‖2

∫ r1

r0

rC̃s,c
q (r, 0)Γm(γpr0, γpr) dr. (2.25)

In this definition, we have made use of the symmetry inherent in the problem, namely
that C̃s

q(r, L) = C̃c
q(r, 0) and C̃s

q(r, 0) = C̃c
q(r, L). The integrals (2.25) can be evaluated

analytically, from which we arrive at the expressions

Cs
pq = −η1r1

ρ̄h

ρ̄c

Γm(γpr0, γpr1)Γm(γqr0, γqr1)

‖Γm,p‖2

κq

L

∞∑
n=−∞

Λn(
γ̃ 2

n − γ 2
p

)(
γ̃ 2

n − γ 2
q

) , (2.26a)

Cc
pq = −η1r1

ρ̄h

ρ̄c

Γm(γpr0, γpr1)Γm(γqr0, γqr1)

‖Γm,p‖2

κq

L

∞∑
n=−∞

(−1)nΛn(
γ̃ 2

n − γ 2
p

)(
γ̃ 2

n − γ 2
q

) . (2.26b)

These expressions contain a system-dependent factor, Λn, for which several forms are
provided in § A.4 of the Appendix. Finally, it is useful to rearrange the two sets of
algebraic equations, in anticipation of our choice of forcing amplitudes:

exp (iκpL)

sin κpL
α−

p +
∑

q

Cs
pqα

−
q +

1

sin κpL
(β+

p − β−
p )

+
∑

q

Cc
pq(β

+
q − β−

q ) =
exp (−iκpL)

sin κpL
α+

p +
∑

q

Cs
pqα

+
q , (2.27a)

1

sin κpL
α−

p +
∑

q

Cc
pqα

−
q +

1

sin κpL
(exp (iκpL)β+

p − exp (−iκpL)β−
p )

+
∑

q

Cs
pq(β

+
q − β−

q ) =
1

sin κpL
α+

p +
∑

q

Cc
pqα

+
q . (2.27b)

Note that when the liners are absent, the coupling matrices are identically zero,
and the solution reduces to that for a rigid-walled duct, β+

p = α+
p exp(−iκpL) and

β−
p = α−

p exp(iκpL).
Equations (2.27a, b) must be closed by specifying two additional constraints to

reduce the number of sets of unknown coefficients to two. The first of these constraints
is a forcing of the system – by convention we prescribe α+

p as the set of incident wave
amplitudes (we could easily have chosen β−

p ). For simplicity, we will consider only a
single incident mode, α+

s ; because of the linearity of the problem, one mode of unit
amplitude is sufficient. Thus,

α+
p =

{
1, p = s,

0, p �= s.
(2.28)

The incident wave that we choose to prescribe must be cut on (propagating) at the
frequency of interest. The criterion for this is κs ∈ �, or

ω > c̄hγs. (2.29)

The second constraint poses a relationship between the transmitted wave amplitudes
β+

p , and the returning wave amplitudes β−
p . This relationship will clearly depend on

the nature of the configuration downstream of the liner system. We will assume a
relationship of the form

β−
p = ρmpβ+

p (no sum over p), (2.30)
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Figure 3. Difference in pressure across upstream interface x = 0, for the geometry in § 3.3,
frequency kL = 13 and varying truncation Nr . −−−, Nr = 2; −·−, Nr = 10; − − −, Nr = 30.

in which we have made explicit the dependence of the reflection coefficient, ρmp , on
the circumferential mode, m. In this work, we do not attempt to accurately model
real configurations, and thus we limit ρmp to either 0 (corresponding to a semi-infinite
downstream duct) or − exp(−i2κpLd) (approximately corresponding to an open-ended
duct of length Ld , ignoring radiation effects). The exception is in § 3.1, in which we use
the solution provided by Levine & Schwinger (1948) for the reflection in an unflanged
circular duct.

The infinite system of equations (2.27a, b) and (2.30) cannot generally be solved
analytically, and two choices of truncation must be made to permit numerical solution.
The first choice is the set of radial modes, p = 0, . . . , Nr , to include. The truncated
system must include all cuton modes, as well as a sufficient number of cutoff modes,
where ‘sufficient’ is defined as leading to a solution that is invariant (to within
desired accuracy) to the inclusion of additional modes. For a given duct, truncation
is frequency dependent; for higher frequency, cutoff modes will decay less rapidly
and thus a larger number will affect the solution. In figure 3, we present the error
between the pressure profiles computed at x = 0− and x = 0+ for three choices of
Nr , for the annular geometry considered in § 3.3. The error at the outer wall does not
converge to zero as quickly as in the bulk of the duct, because the finite liner velocity
at (r, x) = (r1, 0

+) requires that the wall-normal pressure derivative be discontinuous
across the interface. However, this does not have a significant effect on the overall
solution. For example, in the applications presented in this paper in which two radial
modes are cut on, we have found good results including 9 cutoff modes (i.e. Nr = 10).
Also note that the solution remains bounded at (r, x) = (r1, 0

+), and thus the edge
condition of integrable energy density is satisfied.

The second truncation choice is with respect to the infinite series in computing
the coupling matrices, Cs

pq and Cc
pq , in (2.26a) and (2.26b), respectively. This choice

is related to the number of cosines we use to approximate the Green’s function (or
equivalently, the pressure) along the length of the liner, so we label the truncated
range as −Nc � n � Nc. We have already verified that the cosine series expansion of
the pressure converges uniformly along the liner. Note that the summand is an even
function of n, so that only the non-negative range of indices need be computed. It
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Figure 4. Error in absorption computation with varying truncation of cosine series in
(2.26a) and (2.26b). The geometry is from § 3.3 and kL = 13.

is easy to verify that the real terms in each summation decay like O(n−4) and the
imaginary terms like O(n−5) as n → ∞. The two factors in the denominator each
contribute O(n−2) to these overall convergence rates, but only when n is significantly
larger than |κp|L/π or |κq |L/π, respectively. Thus, convergence will be slower for
larger radial mode numbers p and q , above cutoff. Rather than attempt to optimize
the truncation for each combination of p and q , however, we choose Nc so that the
series corresponding to the largest modes – that is, (p, q) = (Nr, Nr ) – are converged
below an error threshold. The truncated series are thus extended by an additional Ñc

terms,

Nc = int(|κNr
|L/π) + Ñc. (2.31)

In figure 4, an overall solution error (based on the acoustic absorption as defined in
the next section, and evaluated with respect to a superconverged result) is evaluated
for different choices of Ñc, for one particular geometry and frequency. For an
arbitrary error tolerance of 10−6, it is clear that Ñ c = 100 leads to sufficient accuracy.
This latter choice was suitable for all cases considered in this work, but is (weakly)
problem dependent and should not be considered a general rule.

2.3. Duct acoustic energy

In this section we define the acoustic absorption, which we will use as our metric for
evaluating the performance of the liner system in § 3. The flux of acoustic energy in
the duct is given by

Ix =

∫
Sduct

〈p′u′〉 dS, (2.32)

where the integral is over the duct cross-section, and the angled brackets denote
an average over time. In a rigid-walled duct, this can be reformulated using the
eigenfunction expansions (2.7) and (2.12). Exploiting the orthogonality of these
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Figure 5. Arrangement of apertures in liner.

eigenfunctions, we obtain

Ix =
π

ρ̄hc̄h

Nmax∑
q=0

Re(κq)

kh

(|α+
q |2 − |α−

q |2)‖Γm,q‖2

+
π

ρ̄hc̄h

∑
q>Nmax

2Im(κq)

kh

Im(α+∗
q α−

q )‖Γm,q‖2, (2.33)

where ()∗ denotes complex conjugate. The first term contains all cuton modes, and
the second consists of the remaining cutoff modes. This second sum contains some
energy, but is generally negligible because either the right- or left-travelling wave
amplitude is exponentially small.

We define the acoustic absorption, ∆, as the fraction of propagating duct energy
that enters the lined section that does not exit it. As described in § 2.2, we restrict our
attention to incident waves containing only a single mode (m, s) of unit amplitude.
Thus, the absorption is defined as

∆ ≡ 1 −

Nmax∑
q=0

κq

κs

(|α−
q |2 + |β+

q |2)‖Γm,q‖2

‖Γm,s‖2

1 +

Nmax∑
q=0

κq

κs

|β−
q |2 ‖Γm,q‖2

‖Γm,s‖2

, (2.34)

where it is understood that the axial wavenumbers are purely real for all terms.

2.4. Liner compliance

Our development thus far has left the acoustic properties of the liner completely
unspecified. We now specialize the analysis to a thin liner comprised of a homogeneous
array of circular apertures, through each of which a mean flow issues (see figure 5).
Provided that the distance between apertures, d , is much larger than their individual
radii, a, then the acoustic behaviour of each aperture can be treated in isolation. This
restriction can be expressed in terms of the open-area ratio of the liner, σ , as

σ =
πa2

d2
� 1. (2.35)

Note that the first equality is only valid if the apertures are arranged on a Cartesian
grid with spacing d in both directions. This configuration is chosen for simplicity,
though other arrangements are certainly admissible, and the conclusions drawn in
this work are generally applicable to all regular arrays with constant d . Furthermore,
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if d is small compared with the acoustic wavelength, then the liner characteristics can
be regarded as a homogeneous composition of the individual aperture properties.

In previous work (Hughes & Dowling 1990; Eldredge & Dowling 2003), these
assumptions allowed the development of a liner compliance from the Rayleigh
conductivity, Ka , of a single aperture through which a high-Reynolds-number flow
passes, derived by Howe (1979). The conductivity accounts for the absorption inherent
in vorticity shed periodically from the rim of the aperture owing to the fluctuating
pressure across it. The acoustic volume flux through the aperture can be distributed
over the surrounding cell of side d to provide the effective compliance. This compliance
can be modified to include the inertia of the fluid within the thickness of the liner, t .
The result, which we merely quote here, is

1

η
=

πa2

σ

1

Ka

+
t

σ
, (2.36)

where Ka is given by

Ka = 2a(γ + iδ). (2.37)

The components γ and δ are only functions of the Strouhal number, St , which is
approximately given by

St ≈ ka/Mh, (2.38)

where Mh is the Mach number of the mean aperture flow. These functions are given
by equations (3.14) of Howe (1979). Note that the sign of the imaginary part differs
from that of Howe because of the convention of using exp(iωt) here. It should be
noted that δ is always positive, so that energy is only absorbed by the liner in this
model, and can never be generated.

3. Results
3.1. Comparison with one-dimensional model

In previous work (Eldredge & Dowling 2003), we developed a one-dimensional model
for the absorption of planar acoustic waves in a duct. The analysis was simplified
by assuming that the fluctuating pressure consisted entirely of plane waves in the
rigid-walled ducts, the lined section, and the cavities. This is not strictly true in
any region: in the rigid-walled ducts, evanescent waves with radial variation will be
present just upstream and downstream of the liner; in the lined section and cavities,
the normal derivative of the pressure must be non-zero at the liner to balance the
acoustic velocity through it. However, for small compliances and frequencies below the
cuton of higher-order modes it is reasonable to ignore these effects, and the excellent
agreement of the model with experimental results supported these approximations.

Here we evaluate this approach by comparing the results for a planar incident
wave, using both the present model and the one-dimensional model. This comparison
is illustrated in figure 6, which shows the absorption computed by both models for a
double liner system with open-ended downstream duct section (of length Ld/L = 4.5),
versus the scaled frequency, kL (the mean temperatures are equal, so kh = kc = k).
The duct is cylindrical, with r1/L = 0.358, r2/L = 0.428, σ1 = 0.0398, t1/L = 0.0237,
σ2 = 0.0198 and t2/L = 0.0169. The aperture Mach number in the innermost liner
is Mh,1 = 0.023. The results are nearly indistinguishable from each other, except at
larger frequencies where there is slight disagreement at the absorption troughs. The
strong similarity of these results verifies the one-dimensional approach for frequencies
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Figure 6. Comparison of absorption from double liner system with open downstream end.
−−−, present model; −·−, one-dimensional model.

below the cuton of higher modes; the evanescent waves scattered by the duct/liner
interface have little effect, as does the small radial variation adjacent to the liner.

It was explained in Eldredge & Dowling (2003) that the absorption troughs in
figure 6 are due to the presence of a pressure node near the middle of the lined
section of duct, which limits the energy flux through the liner and hence reduces the
absorption. This behaviour will be examined in more detail in the next section.

3.2. Higher circumferential modes

We next consider the interaction of incident modes that have circumferential variation,
but which are fundamental in the radial direction (i.e. using the terminology of § 2.2,
m �=0, s =0). In an annular geometry in which the transverse duct dimension is small
compared with the radius, such modes travel through the rigid-walled duct in a helical
pattern, approximately parallel to the walls. Thus, it is reasonable to expect that they
will interact with the liner in a similar way to plane waves, since they can be classified
in the same category of ‘grazing modes’.

In fact, this behaviour can be revealed by averaging equation (2.1) over a narrow
annular region, r ∈ [r1(1 − ε), r1], where ε � 1. The resulting equation for the radially
averaged pressure is,

d2p̄m

dx2
+

(
k2 − m2

r2
1

)
p̄m = − 1

�r

∂pm

∂r

∣∣∣∣
r1

+ O(ε), (3.1)

where �r = εr1 and p̄m is defined as

p̄m(x) ≡ 1

r1�r

∫ r1

r1(1−ε)

rpm(r, x) dr. (3.2)

We have also assumed that no mean temperature differences are present, so kh =
kc = k. A wall compliance condition (e.g. equation (2.4)) can be used to replace the
radial derivative of the pressure at the lined wall in (3.1). It is consistent with our
previous approximations to replace the jump in local pressures across the liner with
the difference in averaged pressures on either side of the liner. The result, omitting
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Figure 7. Absorption of incident modes versus axial wave vector component in annular
duct. −−−, m = 0; −·−, m = 1; − − −, m = 2.

the error term, is

d2p̄m

dx2
+

(
k2 − m2

r2
1

)
p̄m =

η1

�r
(p̄m − p̄m,c), (3.3)

which is a wave equation for the radially averaged pressure, with a coupling with the
averaged pressure in the adjacent cavity, p̄m,c (for which we can derive a similar wave
equation).

When m = 0, this equation is essentially the basis for the one-dimensional model
of Eldredge & Dowling (2003). Higher circumferential modes only serve to modify
the axial wavenumber, and for small annular gap, results for different modes that
have the same axial wavenumber should be comparable. This is clearly exhibited
in figure 7, where the absorption of the m = 0, 1 and 2 modes by a double-liner
system in an annular duct is plotted versus the axial wavenumber, κ0L, which is given
approximately by

κ0L ≈ kL

(
1 − m2

k2r2
1

)1/2

. (3.4)

The parameters are r0/L = 1.10, r1/L = 1.13, r2/L = 1.18, σ1 = 0.0398, t1/L = 0.0237,
σ2 = 0.0198, t2/L =0.0169 and Mh,1 = 0.108. The duct is open-ended, with downstream
length Ld/L = 4.5. The full model was used to compute the results. At small axial
wavenumbers, the agreement is poor because the liner compliance is dependent on
the full wave vector magnitude (through its Strouhal number dependence) rather
than just its axial component. As the wave vectors of the m = 1 and m = 2 modes are
skewed further from the duct axis as κ0L → 0, the wave vector magnitudes (and hence
Strouhal numbers) of the three modes are sharply different.

As the axial wavenumber grows, it becomes comparable to and then surpasses
the circumferential component of the wave vector. The scaled results for both
higher circumferential modes become very similar to the plane-wave results when
the axial component is the larger of the two. For m =1, this cross-over corresponds
to κ0L � 0.89, and for m =2, κ0L � 1.78. The results are nearly indistinguishable from
each other in these ranges.
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The self-similarity of the results for higher circumferential modes in a thin annular
duct allows us to adopt the design rules developed in Eldredge & Dowling (2003)
for maximizing the peak absorption of incident plane waves in a lined duct with a
strongly reflective downstream configuration. These design rules prescribed an optimal
relationship between the parameters of the system of(

Mh,1

σ1

)
opt

=
1

2
√

2

C1L

Sp

, (3.5)

for a single liner, where C1 is the circumference of the liner, C1 = 2πr1, and Sp is the
duct cross-sectional area, Sp = π(r2

1 − r2
0 ). For a double liner, the peaks are maximized

when (
Mh,1

σ1

)
opt

=
1

2
√

2

C1L/Sp

(σ1/σ2)2(C1/C2)2 + 1
, (3.6)

where C2 is the circumference of the outer liner.
These criteria require no modification to optimize the liner system for higher

circumferential modes. Though it is apparent from figure 7 that the peak absorption
for both m = 1 and m = 2 strays from the predicted optimum as the axial wave vector
component approaches zero, the range in frequency, kL, over which this deviation
occurs is smaller (in fact, it is only

√
2 − 1 ≈ 0.41 of the corresponding range of axial

wavenumbers).
Note the change in character of the absorption plot of figure 7 for axial wavenumber

larger than approximately 3. This behaviour can be explained by considering the
reflection of waves from the open duct end. Such a reflection is nearly perfect (indeed,
in our modelling, |ρm0| =1), leading to standing waves in the downstream section
of duct, and possibly the presence of pressure nodes in the lined section. The effect
of pressure nodes is demonstrated by solving the simpler problem of a plane wave
interacting with a single liner. The results of this interaction are depicted in figure 8,
for an annular duct with r0/L =0.282, r1/L = 0.358, σ =0.0398 and Mh = 0.207. The
central absorption plot is surrounded by profiles of the axial distribution of energy
flux through the liner at several frequencies. The energy flux is normalized by the inci-
dent duct energy so that the integral under each curve is equal to the total absorption.

For frequencies such that κ0L < π, the liner supports less than half of a wavelength,
and thus no pressure nodes are present in certain frequency ranges, such as those
centred at κ0L =0.31 and 0.89. In these ranges, the energy flux is distributed nearly
uniformly across the liner, and the absorption achieves a relative maximum. In
contrast, half wavelengths also permit the presence of a single pressure node, and the
absorption is smallest when this node is near the centre of the lined section, where it
has the greatest effect on limiting the liner energy flux, as at κ0L = 0.60 and 1.20. The
effect of the node is diminished and the absorption troughs are shallower at larger
axial wavenumber as the liner is able to support more substantial portions of the
energy flux on either side of the node.

In the range π < κ0L < 2π, at least one pressure ‘node’ is always present. Relative
absorption maxima, such as at κ0L =4.24 and 4.85, correspond to the node situated
near the centre of the liner, allowing peaks in the energy flux on either side. Relative
minima, for example at κ0L =4.53 and 5.15, coincide with two nodes evenly distributed
in the section. However, the difference in absorption between peak and trough in this
frequency range is very slight, because the energy flux distribution is nearly unchanging
apart from a shift in phase. The benefit of the downstream reflection is thus greatly
diminished at frequencies for which κ0L > π, as is evident by comparing with the
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Figure 8. Normalized energy flux through liner versus axial position at several axial wavenum-
bers, denoted by � on central absorption plot. Planar mode in annular duct interacting with
a single-liner system. −−−, open-ended duct; − − −, semi-infinite duct.

included plot of absorption with a semi-infinite downstream duct in figure 8; the
difference in absorption between the two cases is much less remarkable in this range.

3.3. Higher radial modes

The analyses of the previous two sections focused on ranges of frequency over which
the acoustic wavelength was comparable to the duct and liner lengths, yet significantly
larger than any radial dimension. Consequently, they revealed behaviour that was
relatively independent of the transverse extent of the system. At higher frequencies,
however, the width of duct and cavities become important, and if a larger range
of frequency is considered, the effect of the radial dimension becomes clear. In
particular, resonances in the duct and liner cavities can lead to enhanced absorption
at certain frequencies. These resonances are embodied in the decoupling Green’s
function, and specifically in the poles of the system factor Λn present in the coupling
matrices (2.26a) and (2.26b). In this section, we explore the effect of liner system
resonances on axisymmetric incident modes. To simplify matters, we will eliminate
one axial dimension by making the downstream duct semi-infinite, thus preventing
the absorption peaks and troughs due to reflection.

Consider an annular duct with a single liner surrounded by a hollow cavity formed
by a rigid outer wall. The inner wall is at radius r0/L =0.0282, the liner and outer duct
wall are at r1/L = 0.358, and the radius of the outer cavity wall is variable. The liner
open-area ratio is σ =0.0398, the aperture radius is a/L = 2.11 × 10−3 and the liner
thickness is t/L = 0.0237. The bias flow is set at Mh,1 = 0.05. In figure 9, an example
pressure profile at x = 0 is depicted for dimensionless frequency kL = 13 (κ1L =7.08)
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Figure 9. −−−, real and − − −, imaginary components of pressure at interface x = 0 for
r2/r1 = 1.67 and kL = 13.

and r2/r1 = 1.67 when the incident wave consists of the first axisymmetric radial mode
(m, s) = (0, 1). Note the different scales used to depict the real and imaginary parts.

The absorption for the same incident mode is depicted in figure 10 at varying
frequency (represented by the axial wavenumber, κ1L), beginning with the cuton
frequency of the mode. The acoustic wavelength is much larger than the aperture
pitch over the entire frequency range considered, kd < 0.3. In each successive plot, the
rigid cavity wall is brought further inward, thereby decreasing the cavity depth.

Several peaks can be observed, each of which corresponds to a resonance in the liner
system. To understand the physical significance of these resonances, it is instructive
to examine the poles of Λn for this system, given by (A 27), which for uniform mean
temperatures can be written as

Λn = −
D(0)′

n,<(γ̃nr0, γ̃nr1)D
(1)′

n,>(γ̃nr2, γ̃nr1)

D
(0)′
n,<(γ̃nr0, γ̃nr1)D

(1)′
n,>(γ̃nr2, γ̃nr1) − η1

γ̃n

2

πγ̃nr1

D
(0)′
n,<(γ̃nr0, γ̃nr2)

. (3.7)

Poles and zeros occur in pairs in this function, and there are three types of each. The
first type of zero arises from solutions of the duct equation

D(0)′

n,<(γ r0, γ r1) = 0, (3.8)

which we write as γ = ζ (0)
p . There is no dependence on n, because (3.8) does not contain

a compliance, and is thus independent of frequency (recall that k2 = γ̃ 2
n + n2π2/L2).

Indeed, this countably infinite set of zeros is simply the set of radial eigenvalues of
the rigid annular duct. Near these zeros, Λn can be written as

Λn =
D(0)′

n,<(γ̃nr0, γ̃nr1)

B
(0)
n

+ O
(
γ̃n − ζ (0)

p

)2
. (3.9)

Thus, the set of poles π(0)
n,p are the zeros of B (0)

n , which differ from the zeros ζ (0)
p by a

small amount that depends on the compliance, and therefore n.
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Figure 10. Absorption of first radial mode by liner with rigid-walled cavity, with varying
cavity depth. P , duct resonances; C, cavity; H , Helmholtz. (a) r2/r1 = 1.73, (b) r2/r1 = 1.70,
(c) r2/r1 = 1.67, (d ) r2/r1 = 1.64.

It is clear that this set of poles corresponds to resonances in the lined section of
duct, and we label them P (for ‘pipe’). However, only the frequencies associated with
n= 0 lead to physically realizable resonances, because there are no walls to support
higher cosine modes in x. The higher n solutions are poles of the Green’s function
only because its derivatives are constrained to vanish at x = 0, L; the pressure is
not so constrained. The complex frequencies at which the resonances occur are thus
given by

k
(0)
0,p = π(0)

0,p. (3.10)

Note that the right-hand side has some dependence on frequency through the
compliance, so this is not an explicit expression for the complex frequency. However,
the dependence is very weak and an iterative solution is straightforward. Real forcing
frequencies that lie near Re(k(0)

0,p) will lead to large responses by the system. Because
k

(0)
0,p ≈ ζ (0)

p , the associated resonance P(0,p) occurs very near the cuton frequency of
duct mode p, though it is generally only substantial when mode p is present in the
incident wave. Near cuton, the incident wave is bouncing between the inner and
outer walls of the duct with very little propagation in the axial direction. In the
lined section, these waves impinge almost normally on the liner and are thus able
to excite large responses. This is evident in all plots of figure 10 in the wide peak
near κ1L =3, labelled P(0,1). The width of the peak is somewhat misleading, because
the axial wavenumber becomes very sensitive to frequency as κ1L → 0; the frequency
bandwidth of the peak is much smaller. This sensitivity near cuton also explains the
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visible drift of the peak as the cavity is made shallower, as the slight dependence of
the duct resonance on the cavity behaviour is amplified.

The second type of zero/pole of Λn is due to roots of the cavity equation

D(1)′

n,>(γ r2, γ r1) = 0, (3.11)

denoted by γ = ζ (1)
p . Near these zeros, Λn reduces to

Λn = −
D(1)′

n,>(γ̃nr2, γ̃nr1)

B
(1)
n

+ O
(
γ̃n − ζ (1)

p

)2
, (3.12)

and thus this set of poles π(1)
n,p is given by the zeros of B (1)

n , distinct from the

corresponding ζ (1)
p by a small compliance correction. This set of poles represents

the resonances of the cavity behind the liner (type C). However, in contrast to the
previous case, the rigid walls that form the ends of the cavity allow higher axial cosine
modes, so the frequencies at which observable resonances occur are given by

k(1)
n,p =

(
π(1),2

n,p +
n2π2

L2

)1/2

. (3.13)

Again, this should be treated as an implicit expression for the complex frequency. In
figure 10(a), the single peak at κ1L = 7.2 corresponds to both resonances, C(0,1) and

C(1,1), associated with closely spaced frequencies k
(1)
(0,1) and k

(1)
(1,1). The next two peaks

at κ1L = 9 and κ1L =11.3 coincide with resonant modes C(2,1) and C(3,1), respectively.
As the rigid outer wall is brought nearer the liner, the real parts of the poles π(1)

n,p are
increased, and thus the peaks shift to higher frequencies. In figure 10(c), the C(0,1) and
C(1,1) peaks are now distinct, though significantly smaller. In figure 10(d ), the C(1,1)

peak is no longer visible above the background absorption level.
The third and final type of pole of Λn for this system is affiliated with the trivial

zeros,

γ̃n = 0. (3.14)

In contrast with the previous two types, this set has only a single member for each n.
Equation (3.7) can be expanded about this zero, and for circumferential mode m = 0
the affiliated pole is approximately

π(h) =

[
2η1r1

(
1

r2
1 − r2

0

+
1

r2
2 − r2

1

)]1/2

. (3.15)

This pole corresponds to Helmholtz resonance of the liner system (type H ). The
cavity and lined section of duct act in tandem as resonators, providing stiffness to
the fluctuating flow through the apertures in the liner with effective neck length σ/η1

and orifice area 2πr1σ . The corresponding complex frequencies are given by iterative
solution of

k(h)
n =

(
π(h),2 +

n2π2

L2

)1/2

, (3.16)

and represent Helmholtz resonance in the radial direction coupled with axial cosine
modes in the cavity. This type of resonance was also identified by Hughes & Dowling
(1990) in the context of waves incident upon liners and screens. However, their
investigation focused on cavities that were much shallower than the duct radius, so
that their so-called ‘resonance parameter’, Q, was only dependent on the cavity depth.
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Figure 11. Absorption of different modes by single liner/cavity system, r2/r1 = 1.67, semi-
infinite downstream duct. −−−, s = 0; − − −, s =1. An additional axis corresponding to the
axial wavenumber of the first radial mode is included for comparison with figure 10(c).

The poles given by (3.15) reduce to their Q = 1 condition for shallow cavity and large
Strouhal number (and infinitesimally thin liner).

In the case considered in figure 10, excitation of Helmholtz-type resonance is limited
owing to the radial component of the incident mode (the resonance is most effective
when there is little radial variation, so that the resonator volume is uniformly stiff, as
will be demonstrated below). Thus, the absorption at most values of n is not enhanced
above the background level. However, the small peak at κ1L = 15.8, labelled as H(5) in
figure 10(b–d ), corresponds to Helmholtz resonance with n= 5. As frequency increases,
the resistance of the liner is diminished because successive vortex rings shed by each
aperture are more closely spaced, which tends to cancel their induced velocities at
the aperture rim. Simultaneously, the reactance of the liner approaches a constant
level dominated by the inertia of the fluid within its thickness. This behaviour has
the dual effect of suppressing the background level of absorption, and sharpening the
Helmholtz resonance peaks obtainable by real frequencies, as the complex frequency
is now brought nearer the real axis. Furthermore, a notable portion of the incident
wave is scattered into plane waves at the frequency where the peak is observed, and
thus Helmholtz resonance is a secondary effect achieved by these scattered waves.
Note that the absorption peak does not shift substantially with decreasing cavity
depth, because the cross-sectional area of the cavity is nearly twice that of the duct,
so the latter area dominates the determination of the frequency in (3.15).

As described above, the Helmholtz-type resonance of the liner system is most
notable when the incident wave has little radial dependence, as in a plane wave. This
is clearly demonstrated in figure 11, where the absorption of s = 0 and s = 1 incident
waves by the liner system is compared. Whereas the s = 1 mode excites substantial
resonances of the duct and cavity, the s = 0 mode is dominated by Helmholtz-
type resonances corresponding to all values of n (though the peak labelled H(0) is
combined with resonances P(0,0) and C(0,0)). Small peaks can also be observed at the
frequencies corresponding to cavity resonances C(0,1), C(1,1) and C(2,1), but these are
secondary resonances due to scattering of the plane wave into the first radial mode
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Figure 12. Absorption of s = 1 mode with varying mean aperture flux. −·−, Mh = 0.025;
−−−, Mh = 0.05; − − −, Mh = 0.15; · · · , Mh =0.5.

at these frequencies, so their effect on the absorption is much weaker than in the
s = 1 incident mode. Note that no peak is discernible in the s = 0 case at the duct
resonance frequency, k

(0)
0,1.

These three types of resonances – duct resonance (P ), cavity resonance (C) and
Helmholtz resonance (H ) – will generally be possible in all liner systems. They can
also be excited by incident waves with higher circumferential modes. Whether or not
they are actually observed will depend on the nature of the system as well as the
incident wave.

It is interesting to consider the effect of changing the bias flow. The resulting
absorption of the s = 1 mode for the liner system with r2/r1 = 1.67 is depicted in
figure 12, in which the results for four different mean aperture flows are presented
versus frequency, kL, rather than axial wavenumber. It should be noted that the
highest Mach number presented, Mh = 0.5, is probably too large for the results to be
valid, since the compliance was derived with the assumption that the local aperture
flow could be treated as incompressible; we include it here for demonstration purposes
only. It is apparent that the response of the incident wave is sensitive to the variation
in mean flow. The broadband level of absorption has been raised as Mh has increased
up to 0.15, thereby obscuring the resonance peaks. For larger aperture flow, the
absorption level is diminished, suggesting that an optimal flow rate exists.

We propose an expression for this optimal flow rate. Absorption is generally larger
near frequencies at which the imaginary component of the liner compliance, the
liner ‘resistance’, achieves a maximum. For very thin liners, this maximum occurs at
aperture Strouhal number, St = 1.12. However, for most liners, t/a > 1, and thus the
optimal flow rate is dependent on the fluid inertia provided by the liner thickness. The
aperture Strouhal number for liners is often limited to St � 1 (it never exceeds 1.4
in the results presented), for which the Rayleigh conductivity is approximately given
by Ka ≈ 2a(St2/3 + iπSt/4). The imaginary part of the liner compliance provided by
(2.36) is therefore nearly

Im(η) ≈ 1

2

σ

a
St

[
1 +

(
4

3π

t

a
+

1

4

t2

a2

)
St2

]−1

. (3.17)
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The maximum of this expression occurs at

Stmax ≈
(

4

3π

t

a
+

1

4

t2

a2

)−1/2

, (3.18)

or in terms of frequency,

(kL)max ≈ Mh

a/L

(
4

3π

t

a
+

1

4

t2

a2

)−1/2

. (3.19)

Thus, the bias flow exerts a direct influence on the position of the peak resistance.
For the case presented in figure 12, the aperture Mach numbers 0.025, 0.05, 0.15 and
0.5 lead to peaks at (kL)max = 1.97, 3.94, 11.8 and 39.4, respectively. Thus, only the
aperture flow with Mh = 0.15 places this peak in the depicted frequency range, and
the general level of absorption is relatively larger.

The peak liner resistance played no significant role in determining the optimal
absorption for frequencies kL < π, as considered in § § 3.1 and 3.2. Rather, the quasi-
steady limit kL → 0 was used by Eldredge & Dowling (2003) to derive optimal
parameters for maximizing the absorption peaks produced by downstream reflection.
The optimal flow rates determined by these different approaches are generally
discordant, and the choice of which design approach to use should be guided by
the intended use of the liner system.

4. Conclusions
In this work, we have explored the three-dimensional interaction of linear acoustic

disturbances in cylindrical and annular ducts with a perforated liner system with bias
flow. These finite-length systems may consist of multiple concentric liners, each of
which contains a homogeneous array of circular apertures through which the mean
flow travels. The fluctuating pressure adjacent to each aperture excites the unsteady
shedding of vorticity from its rim, which is convected away by the mean flow and
dissipated into heat. This process, when distributed over many such apertures, can
remove a significant amount of acoustic energy from the system.

For the analysis of these systems we have developed a decoupling Green’s function
that recasts the governing Helmholtz equation in integral form, consisting only of
surface integrals over the duct interface cross-section. The mechanism of vorticity
production is formulated in an effective compliance for each liner; the effects of liners
and cavities are embodied in the Green’s function, and solution for the amplitudes
of scattered modes is straightforward after projecting the integral equation onto the
modal eigenfunctions.

In previous work (Eldredge & Dowling 2003), we developed a one-dimensional
model for liner systems of this type to investigate the absorption of plane waves
at frequencies below the cuton of higher modes. Though this model ignored radial
variation in the lined section and evanescent waves at the duct/liner interface, its
results compared very well with experiment. With our present model we have verified
that the one-dimensional approach is very accurate for a wide range of frequencies.
Indeed, the one-dimensional analysis was shown to be equally valid for higher
circumferential modes in narrow annular ducts, in which the nearly planar wavefronts
travel in a spiralling pattern, but still parallel to the liner. A comparison between
different modes revealed self-similar behaviour at common axial wavenumber, and
thus the optimal liner design of Eldredge & Dowling (2003) is equally effective for
maximizing the absorption of all such ‘grazing’ modes.
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The absorption of acoustic energy associated with these grazing modes is enhanced
in certain frequency bands when the downstream geometry reflects a substantial
portion of the transmitted energy to further interact with the liner system. For
frequencies such that the wavelength is larger than twice the liner length, this
enhancement can be substantial if the geometry and flow are nearly optimal. However,
the enhancement is greatly diminished for larger frequencies, for which pressure
minima are constantly present along the liner.

Over a wider frequency spectrum, transverse effects become much more apparent.
Analysis of the poles of the Green’s function revealed three classes of resonance –
duct, cavity and Helmholtz-type – that can significantly enhance the absorption of
incident modes near the associated frequencies. The Helmholtz class of resonance
has been previously explored by Hughes & Dowling (1990), who identified the cavity
volume as providing stiffness to the fluctuating liner flow; our analysis has shown
that, in fact, both the cavity and duct volume act in tandem, though the former is
typically smaller and thus dominant. The other two classes of resonance have received
little attention in the literature, however. The duct resonance is inextricably connected
to the transverse dimensions of the duct, and thus may be difficult to optimize. The
cavity resonances, which occur for each longitudinal cosine mode, are very sensitive to
both cavity depth and length, and thus it may be possible to incorporate them in the
design process. We have also demonstrated that the broadband level of absorption
can be maximized in a frequency range by situating within it the peak of the liner
resistance.

In future work, we will explore the effect of temperature on the phenomena detailed
in this paper. Also, we plan to investigate acoustic interactions in liner systems in the
presence of non-negligible duct flow. This problem is significantly more challenging,
owing to the potential of triggering instabilities that may generate sound.

This work was conducted while the author was a postdoctoral research associate
under the PRECCINSTA project, which was sponsored by the Fifth European
Community Framework Programme, Contract no. ENK5-CT2000-00060. The author
is especially indebted to Professor Ann Dowling, whose support and counsel have
made this work possible.

Appendix. The decoupling Green’s function
In this section, our goal will be to develop a Green’s function that decouples the

integral equation for the pressure in the duct from the pressures in the liner cavities.
We begin by developing a set of coupled integral equations for the pressure in each
region, eliminating as many boundary integrals as possible through conditions on
the corresponding Green’s function in that region. We then combine the resulting
integral equations to eliminate all cavity pressures. The result of this procedure will
be a single ‘decoupling’ Green’s function, through which the pressure in the lined
section of duct is determined entirely by its normal derivatives on the upstream and
downstream interfaces.

A.1. Set of integral equations

Suppose that G(0)
m satisfies the same equation as pm in Ω0, but subject to a singular

forcing term at (r ′, x ′) ∈ Ω0:

1

r

∂

∂r

(
r
∂G(0)

m

∂r

)
+

∂2G(0)
m

∂x2
+

(
k2

h − m2

r2

)
G(0)

m =
1

r ′ δ(r − r ′)δ(x − x ′). (A 1)
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Then Green’s theorem can be used to express the solution to (2.1) in terms of the
boundary values of pm and its normal derivative (e.g. Stakgold 1967),

pm(r, x) =

∫
∂Ω

[
∂G(0)

m

∂n
(r, x|r ′, x ′)pm(r ′, x ′) − G(0)

m (r, x|r ′, x ′)
∂pm

∂n
(r ′, x ′)

]
dS(r ′, x ′), (A 2)

where ∂Ω is the boundary of Ω0, and ∂/∂n represents the outward normal derivative
with respect to the source coordinates (r ′, x ′). Now, suppose that G(0)

m is subject to the
conditions

∂G(0)
m

∂r
(r0, x|r ′, x ′) = 0, x ∈ [0, L], (A 3a)

∂G(0)
m

∂x
(r, 0|r ′, x ′) =

∂G(0)
m

∂x
(r, L|r ′, x ′) = 0, r ∈ [r0, r1], (A 3b)

∂G(0)
m

∂r
(r1, x|r ′, x ′) = −η1

ρ̄h

ρ̄c

G(0)
m (r1, x|r ′, x ′), x ∈ [0, L], (A 3c)

for all (r ′, x ′) ∈ Ω0. Then, by substitution of these conditions and those on pm into
(A 2), we arrive at

pm(r, x) =

∫ r1

r0

r ′G(0)
m (r, x|r ′, 0)

∂pm

∂x
(r ′, 0) dr ′ −

∫ r1

r0

r ′G(0)
m (r, x|r ′, L)

∂pm

∂x
(r ′, L) dr ′

− η1r1

ρ̄h

ρ̄c

∫ L

0

G(0)
m (r, x|r1, x

′)pm(r+
1 , x ′) dx ′, (A 4)

for (r, x) ∈ Ω0. By imposing the vanishing normal derivative of the Green’s function
at x = 0 and x = L, we have removed surface integrals involving the pressure on
these boundaries. The compliance relation on the pressure at r1 has introduced an
integral involving pm just outside the boundary, thus coupling the pressures in Ω0

and Ω1. Let us formulate a similar integral expression for pm in Ωk , k � 1, through
the use of a Green’s function G(k)

m which obeys

1

r

∂

∂r

(
r
∂G(k)

m

∂r

)
+

∂2G(k)
m

∂x2
+

(
k2

c − m2

r2

)
G(k)

m =
1

r ′ δ(r − r ′)δ(x − x ′) (A 5)

in Ωk , as well as the conditions

∂G(k)
m

∂r
(rk, x|r ′, x ′) = ηkG

(k)
m (rk, x|r ′, x ′), x ∈ [0, L], (A 6a)

∂G(k)
m

∂x
(r, 0|r ′, x ′) =

∂G(k)
m

∂x
(r, L|r ′, x ′) = 0, r ∈ [rk−1, rk], (A 6b)

∂G(k)
m

∂r
(rk+1, x|r ′, x ′) = −ηk+1G

(k)
m (rk+1, x|r ′, x ′), x ∈ [0, L]. (A 6c)

Then, simplifying Green’s theorem through the application of boundary conditions
as before, we find that

pm(r, x) = −ηkrk

∫ L

0

G(k)
m (r, x|rk, x

′)pm(r−
k , x ′) dx ′

− ηk+1rk+1

∫ L

0

G(k)
m (r, x|rk+1, x

′)pm(r+
k+1, x

′) dx ′, (A 7)
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for k � 1. The last integral couples the pressures in Ωk−1, Ωk and Ωk+1. The procedure
of developing integral expressions can be repeated until a rigid wall or plenum is
reached, at either of which the series is truncated by virtue of a rigid-wall condition
or negligible pressure fluctuations, respectively.

A.2. Green’s function development

The boundary conditions at x = 0 and x = L suggest a cosine expansion of G(k)
m ,

provided that the series are uniformly convergent, which is verified in § 2.2. Assume
the form

G(k)
m =

1

L

∞∑
n=−∞

R(k)
n (r, r ′) cos

(
nπx

L

)
cos

(
nπx ′

L

)
, (A 8)

for all regions k, where we have omitted the dependence of R(k)
n on the circumferential

wavenumber, m. It can be shown that the solution for k = 0 is

R(0)
n (r, r ′) =

D(0)
n, < (γ̃nr0, γ̃nr<)D(0)

n, > (γ̃nr1, γ̃nr>)

B
(0)
n

, (A 9)

where r< = min(r, r ′) and r> = max(r, r ′). The inner, outer and combined functions
are, respectively,

D(0)
n, < (a, b) = Y ′

m(a)Jm(b) − J ′
m(a)Ym(b), (A 10a)

D(0)
n, > (a, b) =

[
Y ′

m(a) +
η1

γ̃n

ρ̄h

ρ̄c

Ym(a)

]
Jm(b) −

[
J ′

m(a) +
η1

γ̃n

ρ̄h

ρ̄c

Jm(a)

]
Ym(b), (A 10b)

1
2
πB (0)

n =

[
Y ′

m(γ̃nr1) +
η1

γ̃n

ρ̄h

ρ̄c

Ym(γ̃nr1)

]
J ′

m(γ̃nr0)

−
[
J ′

m(γ̃nr1) +
η1

γ̃n

ρ̄h

ρ̄c

Jm(γ̃nr1)

]
Y ′

m(γ̃nr0), (A 10c)

for an annular duct, and for a cylindrical duct are given by

D(0)
n, < (a, b) = Jm(b), (A 11a)

D(0)
n, > (a, b) =

[
Y ′

m(a) +
η1

γ̃n

ρ̄h

ρ̄c

Ym(a)

]
Jm(b) −

[
J ′

m(a) +
η1

γ̃n

ρ̄h

ρ̄c

Jm(a)

]
Ym(b), (A 11b)

1
2
πB (0)

n = − J ′
m(γ̃nr1) − η1

γ̃n

ρ̄h

ρ̄c

Jm(γ̃nr1). (A 11c)

The radial wavenumber is defined as

γ̃n =

{∣∣k2
h − n2π2/L2

∣∣1/2
, khL > nπ,

i
∣∣n2π2/L2 − k2

h

∣∣1/2
, khL < nπ.

(A 12)

Note that the branch chosen is not important, as the functions in which γ̃n appears
are generally even with respect to it.

Similarly, the radial eigenfunction R(k)
n in region Ωk , for k � 1, can be expressed as

R(k)
n (r, r ′) =

D(k)
n, < (γ̄nrk, γ̄nr<)D(k)

n, > (γ̄nrk+1, γ̄nr>)

B
(k)
n

, (A 13)
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where

D(k)
n, < (a, b) =

[
Y ′

m(a) − ηk

γ̄n

Ym(a)

]
Jm(b) −

[
J ′

m(a) − ηk

γ̄n

Jm(a)

]
Ym(b), (A 14a)

D(k)
n, > (a, b) =

[
Y ′

m(a) +
ηk+1

γ̄n

Ym(a)

]
Jm(b) −

[
J ′

m(a) +
ηk+1

γ̄n

Jm(a)

]
Ym(b), (A 14b)

1
2
πB (k)

n =

[
Y ′

m(γ̄nrk+1) +
ηk+1

γ̄n

Ym(γ̄nrk+1)

] [
J ′

m(γ̄nrk) − ηk

γ̄n

Jm(γ̄nrk)

]

−
[
J ′

m(γ̄nrk+1) +
ηk+1

γ̄n

Jm(γ̄nrk+1)

] [
Y ′

m(γ̄nrk) − ηk

γ̄n

Ym(γ̄nrk)

]
, (A 14c)

and

γ̄n =

{∣∣k2
c − n2π2/L2

∣∣1/2
, kcL > nπ,

i
∣∣n2π2/L2 − k2

c

∣∣1/2
, kcL < nπ.

(A 15)

Again, the choice of branch is not crucial.

A.3. Decoupling procedure

The cosine expansion of the Green’s function reduces each of the liner surface integrals
in (A 4) and (A 7) to a projection of the liner pressure onto the cosine space. Define
the projection coefficients as

p̂
±
k,n ≡ 1

L

∫ L

0

pm(r±
k , x) cos

(nπx

L

)
dx. (A 16)

Then, (A 4) can be written as

pm(r, x) =

∫ r1

r0

r ′G(0)
m (r, x|r ′, 0)

∂pm

∂x
(r ′, 0) dr ′ −

∫ r1

r0

r ′G(0)
m (r, x|r ′, L)

∂pm

∂x
(r ′, L) dr ′

− η1r1

ρ̄h

ρ̄c

∞∑
n=−∞

R(0)
n (r, r1)p̂

+
1,n cos

(
nπx

L

)
, (A 17)

and (A 7) as

pm(r, x) = −ηkrk

∞∑
n=−∞

R(k)
n (r, rk)p̂

−
k,n cos

(
nπx

L

)

− ηk+1rk+1

∞∑
n=−∞

R(k)
n (r, rk+1)p̂

+
k+1,n cos

(
nπx

L

)
. (A 18)

When (A 17) and (A 18) are evaluated on their bounding liner surfaces and projected
onto the cosine space, the projection coefficients can easily be eliminated from the
system of equations, and we can develop an integral equation for the pressure in Ω0

that is uncoupled from the liner cavities.
When we carry out this projection on (A 17), evaluated at r1, we find

p̂−
1,n = p̂f,n − η1r1

ρ̄h

ρ̄c

R(0)
n (r1, r1)p̂

+
1,n, (A 19a)
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where p̂f,n represents the projection of the cross-section surface integrals in (A 17).
Similarly, the projection of (A 18), evaluated at both r+

k and r−
k+1, results in

p̂+
k,n = −ηkrkR

(k)
n (rk, rk)p̂

−
k,n − ηk+1rk+1R

(k)
n (rk, rk+1)p̂

+
k+1,n, (A 19b)

p̂−
k+1,n = −ηkrkR

(k)
n (rk+1, rk)p̂

−
k,n − ηk+1rk+1R

(k)
n (rk+1, rk+1)p̂

+
k+1,n. (A 19c)

For a system consisting of Nl liners surrounded by a plenum (in which the outermost
liner may be replaced by a rigid wall) there are 2Nl + 1 coefficients and 2Nl + 1
equations for each n. They can be solved to provide a generic relationship

p̂+
1,n = Qnp̂f,n (no sum over n). (A 20)

where Qn system-dependent. When this is substituted into (A 17), we finally arrive at
the uncoupled integral equation,

pm(r, x) =

∫ r1

r0

r ′G̃m(r, x|r ′, 0)
∂pm

∂x
(r ′, 0) dr ′ −

∫ r1

r0

r ′G̃m(r, x|r ′, L)
∂pm

∂x
(r ′, L) dr ′, (A 21)

where the decoupling Green’s function is given by

G̃m(r, x|r ′, x ′) =
1

L

∞∑
n=−∞

R̃n(r, r
′) cos

(
nπx

L

)
cos

(
nπx ′

L

)
, (A 22)

with

R̃n(r, r
′) ≡ R(0)

n (r, r ′) − η1r1Qn

ρ̄h

ρ̄c

R(0)
n (r, r1)R

(0)
n (r1, r

′). (A 23)

The radial function R(0)
n (r, r ′) is defined in (A 9).

A.4. System factor Λn

In § 2.2, integral equation (A 21) is developed into a solution scheme by introducing
the boundary conditions for ∂pm/∂x in terms of rigid-walled eigenfunctions, and
performing the radial integration over r ′. The resulting expression for the pressure
pm(r, x) in (2.22), and ultimately for the system of algebraic equations (2.27a, b),
contain modal coupling terms with a system-dependent factor Λn. This factor is
defined as

Λn =
2

π

D(0)
n,< (γ̃nr0, γ̃nr1)

B
(0)
n

(
1 + Qn

2

π

D(0)′

n, < (γ̃nr0, γ̃nr1)

B
(0)
n

)
, (A 24)

where the prime denotes differentiation with respect to the second argument. We
provide here the form of Λn for three cases. It is easiest to first define a more compact
notation. The duct and each cavity are represented in Λn by natural groupings of
functions. Thus, we define

f (k)
< ≡ 2

π

D(k)′

n,<

(
γ (k)

n rk, γ
(k)
n rk+1

)
B

(k)
n

, Ck
< ≡ 2

π

ηk+1

γ
(k)
n

D(k)
n, <

(
γ (k)

n rk, γ
(k)
n rk

)
B

(k)
n

, (A 25a, b)

f (k)
> ≡ 2

π

D(k)′

n,>

(
γ (k)

n rk+1, γ
(k)
n rk

)
B

(k)
n

, Ck
> ≡ 2

π

ηk

γ
(k)
n

D(k)
n,>

(
γ (k)

n rk+1, γ
(k)
n rk+1

)
B

(k)
n

, (A 25c, d)

where the radial eigenvalue γ (k)
n takes the value appropriate to the region, either γ̃n

or γ̄n.
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First, for the case of a single liner and plenum, the system consists of only the duct
and thus Λn is simply

Λn = f (0)
< . (A 26)

For a double liner and plenum (or single liner and rigid wall), the duct and adjacent
cavity are both represented in Λn:

Λn =
f (0)

< f (1)
>

f
(1)
> − f

(0)
< + f

(0)
< f

(1)
>

. (A 27)

Finally, for a triple liner and plenum (or double liner and rigid wall), the system term
Λn contains the effects of the duct and both cavities:

Λn =
f (0)

<

[(
f (2)

> − f (1)
< + f (1)

< f (2)
>

)
f (1)

> − C(1)
< C(1)

>

(
1 − f (2)

>

)]
(
f

(2)
> − f

(1)
< + f

(1)
< f

(2)
>

)(
f

(1)
> − f

(0)
< + f

(0)
< f

(1)
>

)
− C

(1)
< C

(1)
>

(
1 + f

(0)
<

)(
1 − f

(2)
>

) .

(A 28)
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